

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P71285A
Publications Code WST02_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme				
	oughout	the paper the candidates may use different letters to the ones given in the mark scl	ieme.		
1(a)	P(F12) = 1 - P(F, 11)				
		= 0.34517 awrt 0.345	A1		
			(2)		
(b)	P(8, 1	F < 15) = $P(F, 14) - P(F, 7)$	M1		
		=0.81104 awrt 0.811	A1		
			(2)		
(c)		F) + F < 70 or F > 10 $3(R) + 30 - R < 70 or R < 20$	M1		
	P(F > 1)	$10) = 1 - P(F_{,,} 10)$ $P(R < 20) = P(R_{,,} 19)$	M1		
		= 0.4922 awrt 0.492	A1		
(1)	TT	0.25 11 > 0.25	(3)		
(d)		0.35 H_1 : $p > 0.35$ e the number of customers who do not buy free range eggs. $Y \sim N(70,$	B1		
	45.5)	the number of customers who do not buy free range eggs. 17-11(70,	M1		
		x-0.5-70 $x-0.5-70$			
	P(Y 8	R(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S	M1 M1		
	≈ 0.01078 or 81.595				
	There is evidence to reject H ₀ . In the critical region				
	There is evidence to support the manager's belief /There is evidence to support				
	the <u>proportion</u> of customers who <u>do not buy free range eggs</u> is <u>more than 35%</u>				
	(o.e)				
			(7) Total 14		
(a)	M1	Writing or using $1 - P(F, 11)$			
	A1	awrt 0.345			
(b)	M1	P(F, 14) - P(F, 7)			
	A1	awrt 0.811			
(c)	M1	Allow equation instead of inequality (may be implied by 2 nd M1)			
	M1	Writing or using $1 - P(F_n, 10)$ ft their 10 but must be finding the correct tail.			
(1)	A1	awrt 0.492			
(d)	B1 Both hypotheses in terms of p or π				
	M1 M1	Writing or using a normal distribution with a mean of 70 Standardising using 85.5/86/86.5, their mean and their sd			
	M1	Using a continuity correction 86 ± 0.5			
	A1	Correct probability awrt 0.0108 or awrt 0.0107 or x value of awrt 82			
		or allow awrt 2.29 and 1.6449 seen			
	13.41	NB exact Binomial 0.01156 Po approx. awrt 0.0352			
	dM1	(dep on 1 st M1) A correct statement based on comparing 86 with their CR or their prob with 0.05 [condone 0.989 > 0.95]—contradicting non-contextual commer	ats MO		
	A1	A correct statement in context.	1710		
		NB award M1A1 for a correct contextual statement on its own.			

Question		Scheme	Marks				
Number 2(i)(a)							
2(1)(α)	$P(X > 14) = \frac{2}{5}$ oe						
			(1)				
(b)	a = 8 - 2(14 - 8)[= -4]						
	b = 14 + 2(14 - 8)[= 26]						
		(26-4)					
	$P(6X > a + b) = \left(\frac{26 - \frac{26 - 4}{6}}{26 + 4}\right) \text{ oe} $ M1						
	$= \frac{67}{90} \text{ oe} $ awrt 0.744 A1						
			(4)				
(**) ()	C I III	$0,22.5] \text{ or } f(s) = \begin{cases} \frac{2}{45} & 0, s, 22.5\\ 0 & \text{otherwise} \end{cases}$	Di				
(ii)(a)		$0,22.5$ or $1(s) = \begin{cases} 45 \\ 0 \end{cases}$ otherwise	B1				
		(o other wise	(1)				
(b)	P(S < 1)	$12) = \frac{12}{"22.5"}$	M1				
		$=\frac{8}{100}$ awrt 0.533	A1				
	(b) $P(S<12) = \frac{12}{"22.5"} = \frac{8}{15}$ awrt 0.5						
(c)	$P(T=6) = {}^{20}C_6 \left({}^{"}\frac{8}{15} \right)^6 \left(1 - {}^{"}\frac{8}{15} \right)^{14} $ M1M1						
	= 0.02072 awrt 0.0207						
			(3) Total 11				
	Notes						
(i)(a)	B1	Allow 0.4					
(b)	M1 A correct method to find the value of a or $\frac{a+b}{2} = 11$ May be awarded in part(a)						
	M1	A correct method to find the value of b or a second correct equation ft their (a) eg $\frac{b-b}{b-c}$	$\frac{14}{a} = \frac{2}{5}$				
	M1	May be awarded in part(a)					
	M1 A1	A correct probability expression using their value for a and their value for b Correct answer					
(ii)(a)	B1	Correct distribution stated allow in words. Condone <					
(b)	M1 A1	Correct method ft their value of $(b-a)$ if positive. Condone 45 in the denominator for Awrt 0.533	this mark				
(c)							
	M1	For $\left(\frac{8}{15} \right)^6 \left(1 - \frac{8}{15} \right)^{14}$					
	M1 A1	Fully correct probability ft their 8/15 awrt 0.0207					

Question Number		Scheme Marks				
3(a)						
			(1)			
(b)	a(27b - 81 + 1) = 1					
		$a = \frac{1}{28}$	A1			
			(2)			
(c)	P(X>	2.25) = 1 - F(2.25)	M1			
		= 0.25237 awrt 0.252	A1 (2)			
			(2)			
(d)(i)	f(x) =	$\frac{3}{7}x^2 - \frac{1}{7}x^3$ or $\frac{2}{7}x$	M1			
	Sketch B1					
(ii)	$f'(x) = \frac{6}{7}x - \frac{3}{7}x^2$					
` ,	$\frac{6}{7}x - \frac{3}{7}x^2 = 0$					
	Mode = 2					
			Total 10			
		Notes				
	1	In this question award mark all parts together				
(a)	B1*	Answer given so need to see $4a = a(b)$ allow $4a(1) = a(b(1) - 1 + 1)$ followed by $b = a(b(1) - 1 + 1)$	= 4			
(b)	M1	For a correct equation				
(a)	A1 M1	1/28 o.e. For $1 - F(2.25)$ or $F(3) - F(2.25)$ Implied by a correct answer				
(c)	A1	awrt 0.252				
(d)(i)	M1	Differentiating to find $f(x)$, one term correct or correct follow through. Condone missing a Differentiation may be seen anywhere in the question. $f(x) = a(12x^2 - 4x^3) \text{ or } 8ax$				
	B1		ae curve			
		Sketch of pdf. Straight line followed by smooth curve with mode near the middle of the curve. Must be connected (no gap). Values not required, but must begin and end on horizontal axis.				
	dM1	Dep on 1st M being awarded. Differentiating their $f(x)$ (for $1 \le x \le 3$) to find $f'(x)$	n uais.			
(ii)		$x^n \to x^{n-1}$ Condone missing a $f'(x) = a(24x - 12x^2)$				
	dM1	Dep on previous M being awarded. Putting their $f'(x) = 0$				
	A1	All but the B1 mark must be awarded				
	A1	1 Am out the D1 mark must be awarded				

Question Number	Scheme					
4(a)	P(X =	$8) = \frac{e^{-6}6^8}{8!} \text{ or } 0.8472 - 0.7440$		M1		
		= 0.10325	awrt 0.103	A1		
(1.)	Γ V. Dα	O(6) D(V - n) < 0.05 for D(V - n - 1) > 0.05 for D(V - 1) > 0.05		N/1	(2)	
(b)	n = 11	P(Xn) < 0.05 for P(Xn) > 0.95 for P(Xn) > 0.95 for P(Xn) > 0.95 for P(Xn) = 0.05		M1 A1cao		
	71 11			Tireao	(2)	
(c)	<i>K</i> ~Po(0.6 <i>m</i>) and $P(K = 0) < 0.05 \text{ t/ } e^{-0.6m} < 0.05 \text{ / } -0.6m < \ln 0.05 \text{ oe}$	or $\lambda = 3$	M1	(2)	
(c)	m=5		<u>or</u> $\lambda = 3$	Alcao		
	m-3			711000	(2)	
(d)	<i>Y</i> ~Po(.	·		B1		
	P(Y	.1) = 1 - P(Y = 0)		M1		
		= 0.9502		A1		
		-184 015			(3)	
(e)	[W~]	Po(18)] $P(W=15) = \frac{e^{-18}18^{15}}{15!} [= 0.078575]$	$Y \sim B(15, \frac{5}{30})$	M1		
	P(Y =	$= \frac{1[Y \sim \text{Po}(3)]) \times P(T = 14[T \sim \text{Po}(15)])}{"0.078575"}$	P(Y=1)	dM1		
		$= \frac{\left(e^{-3} \times 3\right)[=0.149] \times \left(\frac{e^{-15}15^{14}}{14!}\right)[=0.102]}{=0.102}$	$=15(\frac{1}{6})(\frac{5}{6})^{14}$	dM1		
		"0.078575" = 0.1947	awrt 0.195	A1		
	,	- 0.1947	awit 0.193	AI	(4)	
(f)	$(f) J\sim Po(9)$					
		(13) = 0.9261				
		(14) = 0.9585		A1		
	So crit	ical region is $J \ge 15$		AI	(2)	
				Total		
		Notes				
(a)	M1 A1	Correct formula or correct use of tables awrt 0.103				
(b)	M1	A correct probability statement. Implied by correct answer				
` '	A1	cao				
(c)	M1 A1	Forming an equation or inequality or identifying $\lambda = 3$ cao				
(d)	B1	Writing Po(3) [implied by 0.0498 or correct answer]				
	M1	Writing or using $1 - P(Y = 0)$				
	A1	Allow 0.95 or better				
(e)	M1	Using Po(18) to find P($W=15$) (dep on 1 st M1) Attempt at conditional probability with P($Y=1$)×P($T=1$)	= 14) (any value o	f 1) on n	11112	
	dM1	and their $P(W=15)$ on denom. (may be implied)	17) (ally value 0.	i nj oli li	uiii.	
	dM1	(dep on 2 nd M1) Correct ratio of probabilities				
ALT:	A1 awrt 0.195 Use of Binomial: 1^{st} M1 correct distribution, 2^{nd} dM1 P(Y = 1), 3^{rd} dM1 correct expression					
(f)	M1 Writing or using Po(9) Implied by correct CR					
, ,	A1	Cao . Allow $J > 14$. Do not allow as part of a probability statement.				

uestion Number				Scheme			Marks	;
5(a)	$P(\text{score } 8) = 0.25 \times 0.35 = 0.0875$						B1	
							((1)
(b)	sa	mple	Score (y)	calculation	P(Y=y)]		
	((1,3)	-2	0.4×0.25	0.1			
		[1,2)	0	0.4×0.35	0.14		B1	
		(2,3)	2	$0.4^2 + 0.35 \times 0.25$	0.2475		M1	
		(2,2)	4	0.35^2	0.1225		M1	
		(2,1)	6 10	$0.35 \times 0.4 + 0.25^{2}$ 0.25×0.4	0.2025		M1	
		(3,1)	10	0.23×0.4	0.1	J		
	D (1	Y	<u>-2</u> 0		6 8	10		
	P(1	y = y	0.1 0.1	_ _			A1	
			$\left[\frac{1}{10}\right]$ $\left[\frac{7}{50}\right]$	$\begin{bmatrix} \frac{99}{400} \end{bmatrix} \begin{bmatrix} \frac{4}{40} \end{bmatrix}$	$\left[\frac{9}{400}\right]$ $\left[\frac{81}{400}\right]$ $\left[\frac{7}{80}\right]$	$\left[\begin{array}{c} 1\\10 \end{array}\right]$		
								(5)
	E(Y)	$=-2\times$ "0).1"+[0×"0.1	4"]+2×"0.2475"+	$4 \times "0.1225" + 6 \times "0.20$)25"		
(c)	$E(Y) = -2 \times "0.1" + [0 \times "0.14"] + 2 \times "0.2475" + 4 \times "0.1225" + 6 \times "0.2025" + 8 \times 0.0875 + 10 \times "0.1"$						M1	
	= 3.7						A1	
		3.7					_	(2)
							Taka	1.0
					Notes		Tota	18
(a)	B1	A corre	ect calculation	on shown followed b				
, ,						ave a probability of 0		
(b)		For identifying the correct set of y values. Any extras must have a probability of 0 May be split eg 2 may appear twice						
	M1 For at least two correct calculations or probs from $P(Y = -2)$, $P(Y = 0)$, $P(Y = 4)$ or $P(Y = 10)$ M1 For at least one correct calculation or prob for $P(Y = 2)$ or $P(Y = 6)$							
	M1					correct value of y or sample	;	
	A1		correct answ		1	7 1		
(c)	M1 Correct expression ft their table							
	A1 3.7 or exact equivalent							
	Alternative for (c) M1							
					= 1.85] and E(Y) = 4	×"1.85"-2×"1.85"		
				L	, ()			

Qu'n Number	Scheme	Marks
6(a)	3/14 1/14 -1 1 3 5	B1 B1
(b)	E(Y) = 2	(2) B1
	Var(2Y-3) = 4Var(Y)	M1
	$\operatorname{Var}(Y) = \left(\frac{131}{21} - 2^2\right)$	M1
	$Var(2Y - 3) = \frac{188}{21}$ awrt 8.95	A1
(c)	$\int_{-1}^{t} \frac{1}{14} (y+2) dy = \frac{1}{14} \left[\frac{y^2}{2} + 2y \right]_{-1}^{t} \text{ or } \int \frac{1}{14} (y+2) dy = \frac{1}{14} \left[\frac{y^2}{2} + 2y \right] + C \text{ or }$ $\int \frac{1}{14} (y+2) dy = \frac{1}{28} (y+2)^2 + C$	(4) M1
	$\frac{1}{14} \left[\left(\frac{t^2}{2} + 2t \right) - \left(\frac{1}{2} - 2 \right) \right] \text{ or } \frac{1}{14} \left[\frac{(-1)^2}{2} - 2 \right] + C = 0 \& C = \frac{3}{28} \text{ or } \frac{1}{28} (-1+2)^2 + C = 0 \& C = -\frac{1}{28} \text{ leading to } \frac{1}{14} \left(\frac{y^2}{2} + 2y + \frac{3}{2} \right) *$	A1*cso
		(2)
(d)	$\int_{1}^{t} \frac{3}{14} dy + F(1) = \left[\frac{3}{14} y \right]_{1}^{t} + F(1) = \left[\left(\frac{3t}{14} \right) - \left(\frac{3}{14} \right) \right] + F(1)$ or $\int_{1}^{2} \frac{3}{14} dy = \left[\frac{3}{14} y \right] + C \text{ and use of } F(1) = \text{"their } F(1) \text{" or } F(3) = \text{" their } F(3) \text{"}$	M1
	$\int_{3}^{t} \frac{1}{14} (6-y) dy + F(3) = \frac{1}{14} \left[6y - \frac{y^{2}}{2} \right]_{3}^{t} + F(3) = \frac{1}{14} \left[\left(6t - \frac{t^{2}}{2} \right) - \left(18 - \frac{9}{2} \right) \right] + F(3)$ or $\int \frac{1}{14} (6-y) dx = \frac{1}{14} \left[6y - \frac{y^{2}}{2} \right] + C \text{ or } C - \frac{\left(6 - y \right)^{2}}{28} \text{ and use } F(5) = 1$ $\begin{bmatrix} 0 & y_{n} - 1 \\ 1 & (y^{2} - y^{2}) \end{bmatrix}$	M1
	$F(y) = \begin{cases} 0 & y_{,,} -1 \\ \frac{1}{14} \left(\frac{y^2}{2} + 2y + \frac{3}{2} \right) & -1 < y_{,,} 1 \\ \frac{3}{14} y + \frac{1}{14} & 1 < y_{,,} 3 \\ \frac{3}{7} y - \frac{1}{28} y^2 - \frac{1}{4} & 3 < y_{,,} 5 \xi \\ 1 & y > 5 \end{cases}$	A1 A1 B1 (5)

(e)	$"\frac{3}{14}m + \frac{1}{14}" = 0.3$	M1
	$m = \frac{16}{15}$	A1
		(2)
(f)	$P(4Y \le 5 \mid Y \le 3) = \frac{\left(\frac{3}{14} \times \frac{5}{4} + \frac{1}{14}\right)}{\left(\frac{3}{14} \times 3 + \frac{1}{14}\right)} \left[= \frac{\frac{19}{56}}{\frac{5}{7}} \right]$	M1
	$= \frac{19}{40} \text{ or } 0.475$	A1
		(2)
		Total 17

		Notes				
(a)	B1	Shape correct – must not touch/cross the <i>x</i> -axis				
	B 1	Fully correct including labels (all <i>x</i> -axis and at least one vertical axis label which may be 2/14)				
(b)	B 1	Correct value for $E(Y)$				
	M1	Writing or using 4 Var (Y) on its own				
	M1	Correct formula for $Var(Y)$ allow use of their $E(Y)$ if clearly stated				
	A1	awrt 8.95				
(c)	M1	For a correct method for $-1 < y$, 1 Allow finding the area: attempt at trapezium $\times (y+1)$				
		$\frac{1}{2} \left(\frac{1}{14} + \frac{1}{14} (y+2) \right) (y+1)$				
	A1*cso	A fully correct solution with substitution seen or C found leading to $\frac{1}{14} \left(\frac{y^2}{2} + 2y + \frac{3}{2} \right)$				
(4)		Allow any letter				
(d)	M1	For a correct method for $1 < y$, 3 Allow finding the area $\left(\frac{1}{14} + \frac{3}{14}\right) + \frac{3}{14}(y-1)$ or				
		$F(1) + \frac{3}{14}(y-1)$				
	M1	For a correct method for $3 < y_n$, 5 Allow finding the area				
		$\left(\frac{1}{14} + \frac{3}{14}\right) + \frac{6}{14} + \frac{1}{2}\left(\frac{3}{14} + \frac{1}{14}(6 - y)\right)(y - 3)$ or $F(3) + \frac{1}{2}\left(\frac{3}{14} + \frac{1}{14}(6 - y)\right)(y - 3)$				
	A1	For a correct expression attached to 1 < \(\forall y \), 3				
		$29 - (6 - v)^2$				
	A1	For a correct expression attached to $3 < y$, 5 Allow $\frac{29 - (6 - y)^2}{28}$ oe				
	B 1	Top, 2 nd and bottom line correct plus all in terms of the same letter. Allow < for " and vice versa				
(e)	M1	Setting their equation for $1 < 9$, 3 equal to 0.3				
	A1	cao				
	711					
(f)	M1	For writing or using $\frac{F(\frac{5}{4})}{F(3)}$ Allow use of their expression for $3 < y$, 5 for the denominator				
	A1	cao				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom